Temperley-Lieb operator formalism for Z_{q} symmetric models and solvable submanifolds

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1988 J. Phys. A: Math. Gen. 21 L1003
(http://iopscience.iop.org/0305-4470/21/21/001)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 14:30

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Temperley-Lieb operator formalism for \boldsymbol{Z}_{q} symmetric models and solvable submanifolds

P P Martin \dagger and G Launer \ddagger
\dagger Department of Mathematics, University of Birmingham, PO Box 363, Birmingham B15 2TT, UK
\ddagger Department of Physics, Queen Mary College, Mile End Road, London E1 4NS, UK

Received 20 July 1988

Abstract

We give the operator formalism for the transfer matrix in Z_{q} symmetric models. We give the structure and irreducible representations of the associated operator algebra. We show that the Potts model limit gives a subalgebra which is the unitarisable quotient of the Temperley-Lieb algebra, and give the inclusion of this subalgebra. We discuss other subalgebras in the context of a conformal field theory limit of the Z_{q} symmetric models.

It has long been known how to write the n-site layer transfer matrix (тм) for the square lattice q-state Potts model in terms of representations of the Temperley-Lieb algebra $T_{2 n-1}(q)$ with $2 n-1$ operators $\left\{U_{i}\right\}$ obeying relations

$$
\begin{align*}
& U_{i} U_{i}=\sqrt{q} U_{i} \\
& U_{i} U_{i \pm 1} U_{i}=U_{i} \tag{1}\\
& {\left[U_{i}, U_{i+j}\right]=0}
\end{align*} \quad j>1, ~ \$
$$

(Temperley and Lieb 1971 (hereafter referred to as TL), Baxter 1982). The Potts model may be regarded as a special case of the general Z_{q} symmetric model with Hamiltonian (or action in the field theory formalism)

$$
\begin{equation*}
H_{\left\{\beta_{r}\right\}}=\beta \sum_{\substack{\text { lattice } \\ \text { links } i j}} \chi_{\left\{\beta_{r}\right\}}\left(p_{i}-p_{j}\right) \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
\chi_{\left\{\beta_{r}\right\}}(p)=\sum_{r=1,[q / 2]} \beta_{r} \cos [2 \pi r p / q] \tag{3}
\end{equation*}
$$

and where the site variables $p_{i} \in\{1, \ldots, q\}$. Strictly speaking, in this form we have described the non-chiral version of the general model. The constants $\left\{\beta_{r}\right\}$ determine the interactions for a given specific model, with $\beta_{r}=1 /[q / 2]$ for the Potts model, which has $\chi(p)=\delta_{p, 0}$ (Baxter 1982).

An operator formalism is an invaluable tool in the analysis of equilibrium statistical mechanical models, and much play has been made of the TL formalism for the Potts model (see Kuniba et al (1986, hereafter referred to as Kaw), for instance). In the present letter we will give the operator formalism for the Z_{q} model. We will explain
why it is the formalism, describe the associated operator algebra and put this general work in the context of progress with the TL algebra.

The m-site тм for the Z_{q} model with zero boundary conditions at the layer edges (see Baxter 1982) is

$$
\begin{equation*}
T=\left(\prod_{i=1}^{m} M_{2 i-1}\right)\left(\prod_{i=1}^{m-1} M_{2 i}\right) \tag{4}
\end{equation*}
$$

where M_{i} is the тм for a single bond, given by

$$
\begin{equation*}
M_{i}=\sum_{j=0}^{q-1} \alpha_{i j}\left[\left(S_{i}\right)^{j}\right] \tag{5}
\end{equation*}
$$

where $\alpha_{i j}$ is a readily determined function of $\left\{\beta, \beta_{r}\right\}$ and the matrices S_{i} obey the relations

$$
\begin{align*}
& S_{i}^{q}=1 \\
& S_{i} S_{i+1} S_{i}^{-1} S_{i+1}^{-1}=w \quad \quad w=\exp (2 \pi i / q) \tag{6}\\
& {\left[S_{i}, S_{i+j}\right]=0 \quad j>1 .}
\end{align*}
$$

These matrices take the form

$$
S_{2 i}=1 \times 1 \times \ldots \times\left(\begin{array}{ccccc}
1 & & & & \tag{7}\\
& w & & & \\
& & w^{2} & & \\
& & & \ddots & \\
& & & & w^{q-1}
\end{array}\right) \times\left(\begin{array}{lllll}
1 & & & & \\
& w^{q-1} & & & \\
& & w^{q-2} & & \\
& & & \ddots & \\
& & & & w
\end{array}\right) \times \ldots \times 1
$$

$S_{2 i-1}=1 \times 1 \times \ldots \times\left(\begin{array}{ccccc}0 & 1 & & & \\ & 0 & 1 & & \\ & & 0 & 1 & \\ & & & \ddots & 1 \\ 1 & & & & 0\end{array}\right) \times 1 \times \ldots \times 1$
(a total $n=2 m-1$ operators) (see Martin 1986) where the unit matrices are q dimensional and the others appear at the i th position in the product. The basis of spin configurations is then as in Baxter (1982, p 334). It is easy to check that these objects produce the desired тм. For example,

$$
\begin{aligned}
& \alpha_{2 i-1, j}=\exp (\beta \chi(j)) \quad\left(=\alpha_{2 i-1, q-j}\right) \\
& \alpha_{2 i, j}=\sum_{r=0}^{[q / 2]} \frac{w^{-j r} \exp (\beta \chi(r))}{q}
\end{aligned}
$$

for the homogeneous isotropic non-chiral models. The generalisation to chiral models is similarly straightforward.

Ordinary periodic boundary conditions may be obtained by including a factor M_{0} in the тм, where $S_{0}=S_{2 m}=\left(\prod_{i=1}^{m-1} S_{2 i}\right)^{-1}$. Seamed periodic boundary conditions (as, for example, in Baxter et al 1976, Pasquier 1988) require $S_{0}=S_{2 m}=w\left(\Pi_{i=1}^{2 m-1} S_{i}^{-1}\right)$. It is straightforward to check that either of these extensions completes a 'circle' of relations
for the S operators. It is worth noting that, in each case, the extension to periodic boundaries is completed within the existing algebra.

To obtain the structure of the algebra defined by the above relations it is useful to also consider the representation associated with free boundary conditions (the first and last spin in each layer interacting only within the layer, i.e. free from interactions with adjacent layers) which are dual to the above boundary conditions (in the sense of Savit (1980))
$S_{2 i-1}=1 \times 1 \times \ldots \times\left(\begin{array}{ccccc}1 & & & & \\ & w & & & \\ & & w^{2} & & \\ & & & \ddots & \\ & & & & w^{q-1}\end{array}\right) \times\left(\begin{array}{lllll}1 & & & & \\ & w^{q-1} & & & \\ & & w^{q-2} & & \\ & & & \ddots & \\ & & & & w\end{array}\right) \times \ldots \times 1$
$S_{2 i}=1 \times 1 \times \ldots \times\left(\begin{array}{ccccc}0 & 1 & & & \\ & 0 & 1 & & \\ & & 0 & 1 & \\ & & & \ddots & 1 \\ 1 & & & \cdot & 0\end{array}\right) \times 1 \times \ldots \times 1$
(a total $n=2 m+1$ operators) and with self-dual boundary conditions (zero at one end, free at the other), e.g. with $m=2, q=4$,

$$
\begin{align*}
& S_{1}=\left(\begin{array}{cccc}
1 & & & \\
& i & & \\
& & -1 & \\
& & & -i
\end{array}\right) \times\left(\begin{array}{llll}
1 & & & \\
& -i & & \\
& & -1 & \\
& & & i
\end{array}\right) \times 1 \\
& S_{2}=\left(\begin{array}{llll}
0 & 1 & & \\
& 0 & 1 & \\
& & 0 & 1 \\
1 & & & 0
\end{array}\right) \times 1 \tag{9}\\
& S_{3}=1 \times\left(\begin{array}{llll}
1 & & & \\
& i & & \\
& & -1 & \\
& & & -i
\end{array}\right) \times\left(\begin{array}{llll}
1 & & & \\
& -i & & \\
& & -1 & i
\end{array}\right) \\
& S_{4}=1 \times 1 \times\left(\begin{array}{llll}
0 & 1 & & \\
& 0 & 1 & \\
& & 0 & 1 \\
1 & & & \\
& & &
\end{array}\right.
\end{align*}
$$

($2 m$ operators in general).
It is easy to see that the algebra $G_{n}(q)(q \in \mathbb{Z})$ defined by n operators obeying the relations above is q^{n} dimensional and that the self-dual representation consists of q copies of a q^{m}-dimensional irreducible representation ($n=2 m$). The $n=2 m$ operator algebras are thus isomorphic to $M_{q^{m}}(\mathbb{C})$, the q^{m}-dimensional matrix algebras. Similarly
the zero boundary condition representations for the $n=2 m-1$ operator algebras contain exactly one copy of each of the q inequivalent irreducible representations of dimension q^{m-1}, i.e. $G_{2 m-1}(q) \simeq q M_{q^{m-1}}(\mathbb{C})$. It is in this sense that the Z_{q} model and the $G_{n}(q)$ algebra are uniquely related. The irreducible representations may most easily be read off from the free boundary representation, by discarding the last (or first) factor in the cross product.

The Bratteli diagram (see, e.g., Jones 1983) for the inclusion of $G_{n-1}(q)$ in $G_{n}(q)$ is

and the centre of $G_{2 m-1}(q)$ is generated by $S_{1} S_{3} \ldots S_{2 m-1}$. For $n=2 m+1$ the matrix structure of the algebra is exhibited by the identities

$$
\begin{gather*}
\frac{S_{2}^{p} U_{1} S_{2}^{-p}}{\sqrt{ } q}\left(\prod_{i=1}^{m} \frac{U_{2 i+1}}{\sqrt{ } q}\right)\left(\prod_{i=1}^{m} S_{2 i}^{-\beta_{i}}\right)\left(\prod_{i=1}^{m} S_{2 i}^{-\gamma_{i}}\right) \frac{S_{2}^{r} U_{1} S_{2}^{-r}}{\sqrt{ } q}\left(\prod_{i=1}^{m} \frac{U_{2 i+1}}{\sqrt{ } q}\right) \\
=\delta_{p, r}\left(\prod_{i=1}^{m} \delta_{\beta_{i}, \gamma_{i}}\right) \frac{S_{2}^{p} U_{1} S_{2}^{-p}}{\sqrt{ } q}\left(\prod_{i=1}^{m} \frac{U_{2 i+1}}{\sqrt{ } q}\right) \tag{10}
\end{gather*}
$$

($p, r, \beta_{i}, \gamma_{i} \in 0, \ldots, k-1$) where the operators $\left\{U_{i}\right\}$ are defined in (11) below. We may use these identities to reduce any calculation involving the Z_{n} TM to a purely operator algebraic one (cf Baxter (1982) for the Potts model case).

It is straightforward to check that the objects

$$
\begin{equation*}
U_{i}=(1 / \sqrt{ } q)\left(\sum_{j=0}^{q-1} S_{i}^{j}\right) \tag{11}
\end{equation*}
$$

obey the TL relations and that $\alpha_{i j}=$ constant $(j \neq 0)$ in (5) recovers the Potts model TM up to overall factors. We note from this and by reference to Martin (1988a) that the ' U subalgebra' of $G_{n}(q)$ generated by the objects $\left\{U_{i}\right\}$ above is precisely the unitarisable quotient of the TL algebra, which is given in Jones (1983) or Martin (1988a) and is, for example, $M_{1}(\mathbb{C})$ for $q=1$, the Clifford algebra for $q=2$, and the whole tl algebra for $q \geqslant 4$. The inclusion of the U subalgebra in $G_{n}(q)$ may readily be deduced from
the above using Martin (1988a). For example with $n=2, q \geqslant 3$ we have

where the degeneracies are unity unless indicated otherwise. We read from this diagram that the Potts TM is isomorphic to one two-dimensional block; $(q-2)+(q-1)(q-3)=$ $q^{2}-3 q+1$ equivalent one-dimensional blocks and ($q-1$) equivalent three-dimensional blocks, while the general model has one distinct q-dimensional block and ($q-1$) equivalent q-dimensional blocks.

The interest in such subalgebras lies in the simplification (block diagonalisation) of the transfer matrix implied by inclusions such as the one above. A practical example of this may be found in Martin (1988b). In the Potts cases it is precisely this which enables the model to be solved at criticality (Baxter 1982) and with $q=2$ to be solved completely (Onsager 1944). The simplification of representations with $q \leqslant 4$ parallels the solution of conformal field theories (Belavin et al 1984) associated with the same models (Friedan et al 1984).

When $q>4$ the Potts models have first-order phase transitions and therefore no such limit. However, it has been widely conjectured (see, e.g., Huse 1984) that there are Z_{q} symmetric models (probably at the crossover between two- and three-phase models for $q \geqslant 5$) with field theory limits associated with the conformal series. It becomes an important problem, therefore, to identify the other subalgebras of $G_{n}(q)$. If q contains p as a factor then $G_{n}(q)$ has $T_{n}(p)$ as a subalgebra, but this is, in effect, well known, corresponding to the existence of Z_{p}-like representations of Z_{q}, where the generators are

$$
\bar{U}_{i} \propto \sum_{j=0}^{[p]} S_{i}^{(q / p) j} .
$$

What we really want is subalgebras of $G_{n}(q)(q>4)$ which are commuting subalgebras of $T_{n}\left(4 \cos ^{2}(\pi / r)\right)(r(q) \in \mathbb{Z})$ corresponding to the commuting TM of Baxter (1982) (see also Huse 1984, Friedan et al 1984, Kuniba et al 1986). Work on this aspect is in progress. In particular, the operator which conjugates S_{i} to S_{i+1} (and $S_{2 m-1}$ to S_{0} in $G_{2 m-1}$, whose $2 m$ th power is central, cf the braid group (Birman 1974)) would be useful as the generator of translations.

References

Baxter R J 1982 Exactly Solved Models in Statistical Mechanics (New York: Academic)
Baxter R J, Kelland S B and Wu F Y 1976 J. Phys. A: Math. Gen. 9397
Belavin A A, Polyakov A M and Zamalodchikov A B 1984 Nucl. Phys. B 241333
Birman J S 1974 Ann. Math. Stud. 821
Friedan D, Qiu Z and Shenker S 1984 Phys. Rev. Lett. 521575
Huse D A 1984 Phys. Rev. B 303908
Jones V F R 1983 Invent. Math. 721
Kuniba A, Akutsu Y and Wadati M 1986 J. Phys. Soc. Japan 553285

Martin P P 1986 J. Phys. A: Math. Gen. 19 L1117
-_ 1988a J. Phys. A: Math. Gen. 21577
1988b J. Phys. A: Math. Gen. 21 to be published
Onsager L 1944 Phys. Rev. 54117
Pasquier V 1988 Nucl. Phys. B 295 [FS21] 491
Savit R 1980 Rev. Mod. Phys. 52453
Temperley H N V and Lieb E H 1971 Proc. R. Soc. A 322251

