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LETTER TO THE EDITOR 

Temperley-Lieb operator formalism for Zq symmetric models 
and solvable submanifolds 

P P Martin? and G LaunerS 
t Department of Mathematics, University of Birmingham, PO Box 363, Birmingham 
B15 2TT, UK 
$ Department of Physics, Queen Mary College, Mile End Road, London E l  4NS, UK 

Received 20 July 1988 

Abstract. We give the operator formalism for the transfer matrix in Z, symmetric models. 
We give the structure and irreducible representations of the associated operator algebra. 
We show that the Potts model limit gives a subalgebra which is the unitarisable quotient 
of the Temperley-Lieb algebra, and give the inclusion of this subalgebra. We discuss other 
subalgebras in the context of a conformal field theory limit of the Zq symmetric models. 

It has long been known how to write the n-site layer transfer matrix (TM) for the 
square lattice q-state Potts model in terms of representations of the Temperley-Lieb 
algebra T2n-l(q) with 2n - 1 operators {U,}  obeying relations 

u,u, =&U, 

U,U,+I U, = U, (1) 

1 U,, U , , ]  = 0 j >  1 

(Temperley and Lieb 1971 (hereafter referred to as TL), Baxter 1982). The Potts model 
may be regarded as a special case of the general 2, symmetric model with Hamiltonian 
(or action in the field theory formalism) 

where 

X { P , , ( P )  = c P r  cos[2.RrP/ql (3) 
r = l , [ q / 2 1  

and where the site variables p l  G (1,. . . , q} .  Strictly speaking, in this form we have 
described the non-chiral version of the general model. The constants { P r }  determine 
the interactions for a given specific model, with Pr = 1/[q/2] for the Potts model, which 
has x( p )  = c S ~ , ~  (Baxter 1982). 

An operator formalism is an invaluable tool in the analysis of equilibrium statistical 
mechanical models, and much play has been made of the TL formalism for the Potts 
model (see Kuniba et a1 (1986, hereafter referred to as KAW), for instance). In the 
present letter we will give the operator formalism for the 2, model. We will explain 
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why it is the formalism, describe the associated operator algebra and put this general 
work in the context of progress with the TL algebra. 

The m-site TM for the 2, model with zero boundary conditions at the layer edges 
(see Baxter 1982) is 

where Mi is the TM for a single bond, given by 

9-1 

j = O  
Mi = aij[(si)J] 

where aii is a readily determined function of { p , & }  and the matrices Si obey the 
relations 

sg = 1 

s i s i + l s ~ l s ~ ~ l  = w w = exp(2ri /q)  

[ S i ,  Si+j l= 0 j >  1 

These matrices take the form 

0 1  
0 1  

0 1  I 1 * . *  

= 1 x 1 x . .  . x  x l  x . .  . x l  

0 1 1 
(a total n = 2 m - 1  operators) (see Martin 1986) where the unit matrices are q 
dimensional and the others appear at the ith position in the product. The basis of 
spin configurations is then as in Baxter (1982, p 334). It is easy to check that these 
objects produce the desired TM. For example, 

a 2 i - l , j  = exp(Px(j)) ( = a 2 i - l , q - ~ )  

for the homogeneous isotropic non-chiral models. The generalisation to chiral models 
is similarly straightforward. 

Ordinary periodic boundary conditions may be obtained by including a factor MO 
in the TM, where So= Slm = (fly=;' & ) - I .  Seamed periodic boundary conditions (as, 
for example, in Baxter et a1 1976, Pasquier 1988) require So = S2m = w(II:Z;' ST'). It 
is straightforward to check that either of these extensions completes a 'circle' of relations 
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for the S operators. It is worth noting that, in each case, the extension to periodic 
boundaries is completed within the existing algebra. 

To obtain the structure of the algebra defined by the above relations it is useful to 
also consider the representation associated with free boundary conditions (the first 
and last spin in each layer interacting only within the layer, i.e. free from interactions 
with adjacent layers) which are dual to the above boundary conditions (in the sense 
of Savit (1980)) 

1 
I wq-' 

W 2  

(a total n = 2m + 1 operators) and with self-dual boundary conditions (zero at one end, 
free at the other), e.g. with m = 2, q = 4, 

0 1  

s 2 = l x ( l  O ; ;Ixl 

( 2 m  operators in general). 
It is easy to see that the algebra G, ( q )  ( q  E H) defined by n operators obeying the 

relations above is q" dimensional and that the self-dual representation consists of q 
copies of a qm-dimensional irreducible representation ( n  = 2 m ) .  The n = 2 m  operator 
algebras are thus isomorphic to Mq"t (e) ,  the q"-dimensional matrix algebras. Similarly 
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the zero boundary condition representations for the n = 2 m  - 1 operator algebras 
contain exactly one copy of each of the q inequivalent irreducible representations of 
dimension q m - ' ,  i.e. G2m-1(q) = q M q ~ ~ ~ - l ( C ) .  It is in this sense that the 2, model and 
the G,( q )  algebra are uniquely related. The irreducible representations may most 
easily be read off from the free boundary representation, by discarding the last (or 
first) factor in the cross product. 

The Bratteli diagram (see, e.g., Jones 1983) for the inclusion of G,-,(q) in G,(q) 
is 

. . .  . . .  

and the centre of G2m-1(q) is generated by SlS3. , . S2m-1. For n = 2 m  + 1 the matrix 
structure of the algebra is exhibited by the identities 

( p ,  r, P I ,  -yi E 0,. . . , k - 1) where the operators { Ui} are defined in (11) below. We may 
use these identities to reduce any calculation involving the 2, TM to a purely operator 
algebraic one (cf Baxter (1982) for the Potts model case). 

It is straightforward to check that the objects 

obey the TL relations and that cyij = constant ( j  # 0) in (5) recovers the Potts model TM 

up to overall factors. We note from this and by reference to Martin (1988a) that the 
' U subalgebra' of G,, (4) generated by the objects { Vi} above is precisely the unitarisable 
quotient of the TL algebra, which is given in Jones (1983) or Martin (1988a) and is, 
for example, M I ( @ )  for q = 1, the Clifford algebra for q = 2,  and the whole TL algebra 
for q 3 4. The inclusion of the U subalgebra in G,,(q) may readily be deduced from 
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the above using Martin (1988a). For example with n = 2, q 2 3 we have 

where the degeneracies are unity unless indicated otherwise. We read from this diagram 
that the Potts TM is isomorphic to one two-dimensional block; ( q  -2) + ( q  - l ) (q  -3) = 
q2 - 3 q  + 1 equivalent one-dimensional blocks and ( q  - 1) equivalent three-dimensional 
blocks, while the general model has one distinct q-dimensional block and ( q  - 1) 
equivalent q-dimensional blocks. 

The interest in such subalgebras lies in the simplification (block diagonalisation) 
of the transfer matrix implied by inclusions such as the one above. A practical example 
of this may be found in Martin (1988b). In the Potts cases it is precisely this which 
enables the model to be solved at criticality (Baxter 1982) and with q = 2 to be solved 
completely (Onsager 1944). The simplification of representations with q s 4 parallels 
the solution of conformal field theories (Belavin et a1 1984) associated with the same 
models (Friedan et a1 1984). 

When q > 4  the Potts models have first-order phase transitions and therefore no 
such limit. However, it has been widely conjectured (see, e.g., Huse 1984) that there 
are Z, symmetric models (probably at the crossover between two- and three-phase 
models for 9 3 5 )  with field theory limits associated with the conformal series. It 
becomes an important problem, therefore, to identify the other subalgebras of G, (4). 
If q contains p as a factor then G,(q)  has T , ( p )  as a subalgebra, but this is, in effect, 
well known, corresponding to the existence of Zp-like representations of Z,, where 
the generators are 

[PI 
ii,a C ~jq/p) l .  

J = o  

What we really want is subalgebras of G, ( q )  ( q  > 4) which are commuting subalgebras 
of T,(4 cos2( r / r ) )  ( r (  q )  E Z) corresponding to the commuting TM of Baxter (1982) 
(see also Huse 1984, Friedan et a1 1984, Kuniba et a1 1986). Work on this aspect is 
in progress. In particular, the operator which conjugates S, to S, , ,  (and to So 
in G2,,- , ,  whose 2mth power is central, cf the braid group (Birman 1974)) would be 
useful as the generator of translations. 
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